培训证书
2020年人工智能行业或将变成各个行业的“淘金场”,安防行业也不例外。谁能将技术更好的赋能行业,谁就能继续活下去。对于安防行业来说,近年来人工智能已经帮助业内在技术上完成了一次飞跃,而人脸识别、低照度摄像机、智能卡口甚至泛安防产品等市场前景广阔的技术显然也离不开这些人工智能企业。
人工智能技术体系中,生物识别是最早进入落地应用的技术。生物特征识别技术背后涉及到计算机科学、光学与声学等物理科学、生物科学、生物传感器和生物统计学原理,安全技术,以及人工智能技术等众多基础科学与创新应用技术,是一个完整的多学科技术解决方案。目前可用于身份识别的人体特征包括指纹、虹膜、面部、掌纹、静脉等生理特征和步态、笔迹、声音等行为特征。生物特征识别技术具有安全性好、不易丢失、难以仿冒和携带方便等诸多优点。
不可否认,从指纹认证、掌纹识别、指静脉识别到人脸识别、虹膜识别,生物识别技术变得更加成熟的同时,也正在迈进“视觉”时代。
随着技术的进步和成熟,以及市场应用需求的逐渐演变,多模态生物识别技术的声音越来越响亮。展望未来,多模态生物识别技术将成生物识别市场的主流发展趋势,并将迎来越来越宽广的应用领域和市场。a&s Research调查显示,单一的生物识别并不能够解决所有场景下的身份认证问题,每一种技术都有一定的局限性。而多模态识别技术,一方面丰富了场景数据,使识别更为高效精准;另一方面,它更适合复杂场景的应用变化,在很多场景中是最适合的生物识别技术。不可置否,多模态识别是未来生物识别技术发展的主流的一个方向。而多模态统一认证平台,不但融合多种识别技术,而且可以根据决策权重和场景需求,灵活自动配置适合的生物识别技术,将成为多模态生物识别技术发展的理想状态。
当前来看,多模态识别技术的落地还面临着市场教育的过程,需要生物识别技术企业共同努力促进技术的商业化和规模化应用。
安防产业发展数十年,当前已经形成了明显的梯队,大众所熟知的海康威视,大华股份,宇视科技,稳居全国安防市场前三位,同时也有不少新锐科技企业如商汤科技、旷视科技、依图科技等涉足安防领域。
除了个别重点城市不同应用场景外,AI+安防企业在实际应用地区重合度还不算太高,与京津地区、长三角、珠三角,三大智能安防产业集群也稍有差异,全国AI+安防的应用普及率很低,还有很多城市当前并没有AI企业进行业务渗透。
受益于安防领域深度学习算法的快速发展,智能安防已经得到了越来越广泛的应用。面对安防视频产品下游的需求,运营服务将有较大的市场空间,这也将成为我国安防产业未来的发展方向。
附件列表
扫一扫,关注我们